Thermal physics, cloud geometry and the stellar initial mass function

نویسنده

  • Richard B. Larson
چکیده

The thermal properties of star-forming clouds have an important influence on how they fragment into stars, and it is suggested in this paper that the low-mass stellar initial mass function (IMF), which appears to be almost universal, is determined largely by the thermal physics of these clouds. In particular, it is suggested that the characteristic stellar mass, a little below one solar mass, is determined by the transition from an initial cooling phase of collapse to a later phase of slowly rising temperature that occurs when the gas becomes thermally coupled to the dust. Numerical simulations support the hypothesis that the Jeans mass at this transition point plays an important role in determining the peak mass of the IMF. A filamentary geometry may also play a key role in the fragmentation process because the isothermal case is a critical one for the collapse of a cylinder: the collapse and fragmentation of a cylinder can continue freely as long as the temperature continues to decrease, but not if it begins to increase. The limited available results on the dependence of the thermal properties of clouds on metallicity do not suggest a strong dependence of the IMF on metallicity, but the far-infrared background radiation in starburst regions and in the early Universe may significantly shift the peak mass to higher masses in these situations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of New MOND Interpolating Function with Rotation Curves of Galaxies

The rotation curves of a sample of 46 low- and high-surface brightness galaxies are considered in the context of Milgrom's modi_ed dynamics (MOND) to test a new interpolating function proposed by Zhao et al. (2010) [1] and compare with the results of simple interpolating function. The predicted rotation curves are calculated from the total baryonic matter based on the B-band surface photometry,...

متن کامل

Thermal physics, cloud geometry, and the stellar IMF

The thermal properties of star-forming clouds have an important influence on how they fragment into stars, and it is suggested in this paper that the low-mass stellar IMF, which appears to be almost universal, is determined largely by the thermal physics of these clouds. In particular, it is suggested that the characteristic stellar mass, a little below one solar mass, is determined by the tran...

متن کامل

The effect of variation of stellar dispersion velocities by the galactic latitude in interpreting gravitational microlensing observations

Our galaxy is a spiral galaxy and its stars are mostly in a thin disk and rotate around the galactic center. The vertical component of the dispersion velocity of stars is a function of the galactic latitude and decreases with increasing it. In the galactic Besancon model, this dependence is ignored and they just consider the dependence of dispersion velocity on the stellar age. Becanson model i...

متن کامل

Scaling relations in dynamical evolution of star clusters

We have carried out a series of small scale collisional N-body calculations of single-mass star clusters to investigate the dependence of the lifetime of star clusters on their initial parameters. Our models move through an external galaxy potential with a logarithmic density profile and they are limited by a cut-off radius. In order to find scaling relations between the lifetime of star cluste...

متن کامل

The Jeans mass and the origin of the knee in the IMF

We use numerical simulations of the fragmentation of a 1000 M⊙ molecular cloud and the formation of a stellar cluster to study how the initial conditions for star formation affect the resulting initial mass function (IMF). In particular, we are interested in the relation between the thermal Jeans mass in a cloud and the knee of the initial mass function, i.e. the mass separating the region with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005